Quadrature Methods for Integral Equations of the Second Kind Over Infinite Intervals
نویسندگان
چکیده
Convergence results are proved for a class of quadrature methods for integral equations of the form y(t) = fit) + /ô° k(t, s)y(s) ds. An important special case is the Nystrom method, in which the integral term is approximated by an ordinary quadrature rule. For all of the methods considered here, the rate of convergence is the same, apart from a constant factor, as that of the quadrature approximation to the integral term.
منابع مشابه
NUMERICAL SOLUTION OF LINEAR FREDHOLM AND VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND BY USING LEGENDRE WAVELETS
In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...
متن کاملSolving Linear Fred Holm Fuzzy Integral Equations of the Second Kind by Modified Trapezoidal Method
One of the methods for solving definite integrals is modified trapezoid method, which is obtained by using Hermitian interpolation (see e.g. [12]). In this article, we have used modified trapezoid quadrature method and Generalized differential to solve the Fredholm fuzzy integral equations of the second kind. This method leads to solve fuzzy linear system. Finally the proposed method is illustr...
متن کاملSPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS
The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...
متن کاملApplication of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations
In this study, an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials. Properties of these polynomials and operational matrix of integration are first presented. These properties are then used to transform the integral equation to a matrix equation which corresponds t...
متن کاملA Method to Approximate Solution of the First Kind Abel Integral Equation Using Navot's Quadrature and Simpson's Rule
In this paper, we present a method for solving the rst kind Abel integral equation. In thismethod, the rst kind Abel integral equation is transformed to the second kind Volterraintegral equation with a continuous kernel and a smooth deriving term expressed by weaklysingular integrals. By using Sidi's sinm - transformation and modied Navot-Simpson'sintegration rule, an algorithm for solving this...
متن کامل